《PHP教程:PHP使用數(shù)組實(shí)現(xiàn)矩陣數(shù)學(xué)運(yùn)算的方法示例》要點(diǎn):
本文介紹了PHP教程:PHP使用數(shù)組實(shí)現(xiàn)矩陣數(shù)學(xué)運(yùn)算的方法示例,希望對您有用。如果有疑問,可以聯(lián)系我們。
PHP應(yīng)用本文實(shí)例講述了PHP使用數(shù)組實(shí)現(xiàn)矩陣數(shù)學(xué)運(yùn)算的方法.分享給大家供大家參考,具體如下:
PHP應(yīng)用矩陣運(yùn)算就是對兩個數(shù)據(jù)表進(jìn)行某種數(shù)學(xué)運(yùn)算,并得到另一個數(shù)據(jù)表.
下面的例子中我們創(chuàng)建了一個基本完整的矩陣運(yùn)算函數(shù)庫,以便用于矩陣操作的程序中.
PHP應(yīng)用來自 PHP5 in Practice? (U.S.)Elliott III & Jonathan D.Eisenhamer
PHP應(yīng)用
<?php
// A Library of Matrix Math functions.
// All assume a Matrix defined by a 2 dimensional array, where the first
// index (array[x]) are the rows and the second index (array[x][y])
// are the columns
// First create a few helper functions
// A function to determine if a matrix is well formed. That is to say that
// it is perfectly rectangular with no missing values:
function _matrix_well_formed($matrix) {
// If this is not an array, it is badly formed, return false.
if (!(is_array($matrix))) {
return false;
} else {
// Count the number of rows.
$rows = count($matrix);
// Now loop through each row:
for ($r = 0; $r < $rows; $r++) {
// Make sure that this row is set, and an array. Checking to
// see if it is set is ensuring that this is a 0 based
// numerically indexed array.
if (!(isset($matrix[$r]) && is_array($matrix[$r]))) {
return false;
} else {
// If this is row 0, calculate the columns in it:
if ($r == 0) {
$cols = count($matrix[$r]);
// Ensure that the number of columns is identical else exit
} elseif (count($matrix[$r]) != $cols) {
return false;
}
// Now, loop through all the columns for this row
for ($c = 0; $c < $cols; $c++) {
// Ensure this entry is set, and a number
if (!(isset($matrix[$r][$c]) &&
is_numeric($matrix[$r][$c]))) {
return false;
}
}
}
}
}
// Ok, if we actually made it this far, then we have not found
// anything wrong with the matrix.
return true;
}
// A function to return the rows in a matrix -
// Does not check for validity, it assumes the matrix is well formed.
function _matrix_rows($matrix) {
return count($matrix);
}
// A function to return the columns in a matrix -
// Does not check for validity, it assumes the matrix is well formed.
function _matrix_columns($matrix) {
return count($matrix[0]);
}
// This function performs operations on matrix elements, such as addition
// or subtraction. To use it, pass it 2 matrices, and the operation you
// wish to perform, as a string: '+', '-'
function matrix_element_operation($a, $b, $operation) {
// Verify both matrices are well formed
$valid = false;
if (_matrix_well_formed($a) && _matrix_well_formed($b)) {
// Make sure they have the same number of columns & rows
$rows = _matrix_rows($a);
$columns = _matrix_columns($a);
if (($rows == _matrix_rows($b)) &&
($columns == _matrix_columns($b))) {
// We have a valid setup for continuing with element math
$valid = true;
}
}
// If invalid, return false
if (!($valid)) { return false; }
// For each element in the matrices perform the operatoin on the
// corresponding element in the other array to it:
for ($r = 0; $r < $rows; $r++) {
for ($c = 0; $c < $columns; $c++) {
eval('$a[$r][$c] '.$operation.'= $b[$r][$c];');
}
}
// Return the finished matrix:
return $a;
}
// This function performs full matrix operations, such as matrix addition
// or matrix multiplication. As above, pass it to matrices and the
// operation: '*', '-', '+'
function matrix_operation($a, $b, $operation) {
// Verify both matrices are well formed
$valid = false;
if (_matrix_well_formed($a) && _matrix_well_formed($b)) {
// Make sure they have complementary numbers of rows and columns.
// The number of rows in A should be the number of columns in B
$rows = _matrix_rows($a);
$columns = _matrix_columns($a);
if (($columns == _matrix_rows($b)) &&
($rows == _matrix_columns($b))) {
// We have a valid setup for continuing
$valid = true;
}
}
// If invalid, return false
if (!($valid)) { return false; }
// Create a blank matrix the appropriate size, initialized to 0
$new = array_fill(0, $rows, array_fill(0, $rows, 0));
// For each row in a ...
for ($r = 0; $r < $rows; $r++) {
// For each column in b ...
for ($c = 0; $c < $rows; $c++) {
// Take each member of column b, with each member of row a
// and add the results, storing this in the new table:
// Loop over each column in A ...
for ($ac = 0; $ac < $columns; $ac++) {
// Evaluate the operation
eval('$new[$r][$c] += $a[$r][$ac] '.
$operation.' $b[$ac][$c];');
}
}
}
// Return the finished matrix:
return $new;
}
// A function to perform scalar operations. This means that you take the scalar value,
// and the operation provided, and apply it to every element.
function matrix_scalar_operation($matrix, $scalar, $operation) {
// Verify it is well formed
if (_matrix_well_formed($matrix)) {
$rows = _matrix_rows($matrix);
$columns = _matrix_columns($matrix);
// For each element in the matrix, multiply by the scalar
for ($r = 0; $r < $rows; $r++) {
for ($c = 0; $c < $columns; $c++) {
eval('$matrix[$r][$c] '.$operation.'= $scalar;');
}
}
// Return the finished matrix:
return $matrix;
} else {
// It wasn't well formed:
return false;
}
}
// A handy function for printing matrices (As an HTML table)
function matrix_print($matrix) {
// Verify it is well formed
if (_matrix_well_formed($matrix)) {
$rows = _matrix_rows($matrix);
$columns = _matrix_columns($matrix);
// Start the table
echo '<table>';
// For each row in the matrix:
for ($r = 0; $r < $rows; $r++) {
// Begin the row:
echo '<tr>';
// For each column in this row
for ($c = 0; $c < $columns; $c++) {
// Echo the element:
echo "<td>{$matrix[$r][$c]}</td>";
}
// End the row.
echo '</tr>';
}
// End the table.
echo "</table>/n";
} else {
// It wasn't well formed:
return false;
}
}
// Let's do some testing. First prepare some formatting:
echo "<mce:style><!--
table { border: 1px solid black; margin: 20px; }
td { text-align: center; }
--></mce:style><style mce_bogus="1">table { border: 1px solid black; margin: 20px; }
td { text-align: center; }</style>/n";
// Now let's test element operations. We need identical sized matrices:
$m1 = array(
array(5, 3, 2),
array(3, 0, 4),
array(1, 5, 2),
);
$m2 = array(
array(4, 9, 5),
array(7, 5, 0),
array(2, 2, 8),
);
// Element addition should give us: 9 12 7
// 10 5 4
// 3 7 10
matrix_print(matrix_element_operation($m1, $m2, '+'));
// Element subtraction should give us: 1 -6 -3
// -4 -5 4
// -1 3 -6
matrix_print(matrix_element_operation($m1, $m2, '-'));
// Do a scalar multiplication on the 2nd matrix: 8 18 10
// 14 10 0
// 4 4 16
matrix_print(matrix_scalar_operation($m2, 2, '*'));
// Define some matrices for full matrix operations.
// Need to be complements of each other:
$m3 = array(
array(1, 3, 5),
array(-2, 5, 1),
);
$m4 = array(
array(1, 2),
array(-2, 8),
array(1, 1),
);
// Matrix multiplication gives: 0 31
// -11 37
matrix_print(matrix_operation($m3, $m4, '*'));
// Matrix addition gives: 9 20
// 4 15
matrix_print(matrix_operation($m3, $m4, '+'));
?>
PHP應(yīng)用PS:這里再為大家推薦幾款在線計(jì)算工具供大家參考使用:
PHP應(yīng)用在線一元函數(shù)(方程)求解計(jì)算工具:
http://tools.jb51.net/jisuanqi/equ_jisuanqi
PHP應(yīng)用科學(xué)計(jì)算器在線使用_高級計(jì)算器在線計(jì)算:
http://tools.jb51.net/jisuanqi/jsqkexue
PHP應(yīng)用在線計(jì)算器_標(biāo)準(zhǔn)計(jì)算器:
http://tools.jb51.net/jisuanqi/jsq
PHP應(yīng)用更多關(guān)于PHP相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《PHP數(shù)學(xué)運(yùn)算技巧總結(jié)》、《PHP運(yùn)算與運(yùn)算符用法總結(jié)》、《php字符串(string)用法總結(jié)》、《PHP數(shù)組(Array)操作技巧大全》、《PHP常用遍歷算法與技巧總結(jié)》、《PHP數(shù)據(jù)結(jié)構(gòu)與算法教程》、《php程序設(shè)計(jì)算法總結(jié)》、《php正則表達(dá)式用法總結(jié)》及《php常見數(shù)據(jù)庫操作技巧匯總》
PHP應(yīng)用希望本文所述對大家PHP程序設(shè)計(jì)有所幫助.
轉(zhuǎn)載請注明本頁網(wǎng)址:
http://www.snjht.com/jiaocheng/715.html